Navigacija
Lista poslednjih: 16, 32, 64, 128 poruka.

3 nova zadatka (malo teža)

[es] :: Matematika :: 3 nova zadatka (malo teža)

[ Pregleda: 5363 | Odgovora: 9 ] > FB > Twit

Postavi temu Odgovori

Autor

Pretraga teme: Traži
Markiranje Štampanje RSS

kajla
Milorad Janković
Beograd

Član broj: 445
Poruke: 909
*.59.EUnet.yu



+2 Profil

icon 3 nova zadatka (malo teža)11.07.2002. u 12:31 - pre 250 meseci
1. Na koliko načina se može popuniti pravougaona tablica sa m vrsta i n kolona (ukupno mn polja) brojevima +1 i -1, tako da proizvod brojeva u svakoj vrsti i svakoj koloni bude jednak 1?

2. Za koje prirodne brojeve n su svi koeficijenti u razvoju binoma (a+b)^n neparni brojevi?

3. Koliko ima prirodnih brojeva čije cifre, uzete redom, obrazuju:
a) aritmetičku progresiju sa razlikom različitom od 0;
b) geometrijsku progresiju sa količnikom različitim od 0 i 1?

poz.
 
Odgovor na temu

srki
Srdjan Mitrovic
Auckland, N.Z.

Član broj: 2237
Poruke: 3654
*.rcub.bg.ac.yu



+3 Profil

icon Re: 3 nova zadatka (malo teža)11.07.2002. u 18:53 - pre 250 meseci
1. 2^[(n-1)(m-1)]
2. n=4k-1
3. e ovaj ne mogu napamet vec moram da pisem tako da ga necu sada uraditi ali i on je jako lak.



 
Odgovor na temu

kajla
Milorad Janković
Beograd

Član broj: 445
Poruke: 909
195.252.103.*



+2 Profil

icon Re: 3 nova zadatka (malo teža)12.07.2002. u 11:26 - pre 250 meseci
Ovaj drugi ti nije tačan, za k=3 tj n=11 pojavljuje se koeficijent 330 i 462.

poz.
 
Odgovor na temu

srki
Srdjan Mitrovic
Auckland, N.Z.

Član broj: 2237
Poruke: 3654
*.beotel.net



+3 Profil

icon Re: 3 nova zadatka (malo teža)12.07.2002. u 21:15 - pre 250 meseci
a da nije samo n=1 i n=3?
 
Odgovor na temu

kajla
Milorad Janković
Beograd

Član broj: 445
Poruke: 909
195.252.103.*



+2 Profil

icon Re: 3 nova zadatka (malo teža)12.07.2002. u 21:56 - pre 250 meseci
Nije, evo da bi pomogao malo rećiću da postoji beskonačno takvih brojeva n.

poz.
 
Odgovor na temu

srki
Srdjan Mitrovic
Auckland, N.Z.

Član broj: 2237
Poruke: 3654
*.beotel.net



+3 Profil

icon Re: 3 nova zadatka (malo teža)13.07.2002. u 03:26 - pre 250 meseci
mislim da je resenje 2^n-1
da li je tako?
 
Odgovor na temu

kajla
Milorad Janković
Beograd

Član broj: 445
Poruke: 909
195.252.103.*



+2 Profil

icon Re: 3 nova zadatka (malo teža)13.07.2002. u 12:37 - pre 250 meseci
Da to je rešenje. Naći rešenje je lakši deo zadatka, teži deo je dokazati da je 2^n-1 rešenje.

poz.
 
Odgovor na temu

srki
Srdjan Mitrovic
Auckland, N.Z.

Član broj: 2237
Poruke: 3654
*.beotel.net



+3 Profil

icon Re: 3 nova zadatka (malo teža)13.07.2002. u 18:58 - pre 250 meseci
ma ja sam dokazao i nisam pokusavao da proveravam.
n nad k je n(n-1).....(n-k+1)/1*2*3*...*k
n je neparno u svakom slucaju.
mora niti
n-1=2*m1 (m1-neparan broj)
n-3=4*m2
n-7=8*m3
i tako dalje....poslednji uslov koji mora biti zadovoljen je n-(2^p-1)=2^p* mp
gde je p=[ log(n/2) ] logaritam sa osnovom 2 od n/2. [] je ceo deo.
tada je mp=1 (m sa indeksom p)
dolazimo do zakljucka da je dovoljan samo poslednji uslov pa ce i svi ostali biti zadovoljeni.
dobijamo konacno n=2^(p+1)-1
 
Odgovor na temu

Blade Runner
USA

Član broj: 4816
Poruke: 1
*.coxtarget.com



Profil

icon Re: 3 nova zadatka (malo teža)03.08.2002. u 03:46 - pre 249 meseci
Ako mogu malo da prokomentarisem resenje prvog zadatka. Resenje je kao da posmatramo tablicu (m-1)X(n-1) i na proizvoljan nacin popunimo sa -1 ili +1. To je upravo 2^[(m-1)*(n-1)]. Preostala polja (sva polja m-tog reda i n-te kolone izuzev preseka) bi trebalo da popunimo sa odgovarajucim vrednostima da bi uslov zadatka bio zadovoljen. To se sve i uklapa, ali preostaje polje preseka (koordinate m,n) koje treba popuniti tako da se ispuni uslov zadatka i za m-ti red (popunjena sva polja izuzev m,n) i za n-tu kolonu (popunjena sva polja izuzev m,n), a to nije moguce. Gde je greska???
 
Odgovor na temu

Milos^
Beograd

Član broj: 4596
Poruke: 11
195.250.105.*



Profil

icon Re: 3 nova zadatka (malo teža)04.08.2002. u 01:16 - pre 249 meseci
Moguce je, i to uvek. Po nacinu na koji popunjavas poslednji red vidi se da je njegov proizvod (ako ne mnozimo element u cosku) jednak proizvodu svih elemenata odgovarajuce (m-1)x(n-1) tablice. To isto vazi i za poslednju kolonu, pa ce poslednji red i poslednja kolona imati jednak proizvod ma sta stavio u cosak.
 
Odgovor na temu

[es] :: Matematika :: 3 nova zadatka (malo teža)

[ Pregleda: 5363 | Odgovora: 9 ] > FB > Twit

Postavi temu Odgovori

Navigacija
Lista poslednjih: 16, 32, 64, 128 poruka.