Navigacija
Lista poslednjih: 16, 32, 64, 128 poruka.

Linearna algebra - zadaci - HITNO!!!

[es] :: E-Poslovanje :: E-Transakcije :: Linearna algebra - zadaci - HITNO!!!

[ Pregleda: 4161 | Odgovora: 0 ] > FB > Twit

Postavi temu Odgovori

Autor

Pretraga teme: Traži
Markiranje Štampanje RSS

Nejection

Član broj: 69627
Poruke: 5
212.200.179.*



Profil

icon Linearna algebra - zadaci - HITNO!!!03.02.2008. u 20:26 - pre 167 meseci
Treba mi pomoc oko zadataka. Da li neko zna da resi ove zadatke?

1. Neka je u unitarnom vektorskom prostoru R3[x] sa skalarnim proizvodom odredjenim sa (a2x2+a1x+a0,b2x2+b1x+b0)=a2b2+a1b1+a0b0, potprostor S generisan vektorima 4x2-2x i 4x-2. Odrediti S ortogonalno i razloziti vektor x2+x+1 na ortogonalne komponente.

2. Linearno preslikavanje vektorskog prostora V nad poljem realnih brojeva sa bazom (a, b, c) zadovoljava uslove
A(a+b-c)=2a
A(a+b+c)=4b+2c
A(a-b)=c-a
Odrediti A-1(a), A-1(b), A-1(c)

3. Linearno preslikavanje vektorskog prostora V nad poljem realnih brojeva sa bazom (a, b, c) zadovoljava uslove
A(a+b+c)=a+c
A(a-b+c)=0
A(c)=a
Odrediti matricu transformacije A u odnosu na bazu (a+b,b+c,c+a) i sliku vektora 4a+3b+5c.

4. Da li postoji kompleksna kvadratna matrica reda 2008 ciji su svi karakteristicni koreni celi brojevi i kod koje su determinanta i trag jednaki 1

5. Neka je A realna matrica formata 2x2 i f preslikavanje iz R2,2 u R2,2 zadato sa f(X)=AX-XA, za sve X realne matrice formata 2x2. Dokazati da je f linearno preslikavanje ciji je rang 0 ili 2 ili 3.
 
Odgovor na temu

[es] :: E-Poslovanje :: E-Transakcije :: Linearna algebra - zadaci - HITNO!!!

[ Pregleda: 4161 | Odgovora: 0 ] > FB > Twit

Postavi temu Odgovori

Navigacija
Lista poslednjih: 16, 32, 64, 128 poruka.