
Computation of the n-th decimal digit of π with low memory

Xavier Gourdon

February 11, 2003

Abstract

This paper presents an algorithm that computes directly the n-th decimal digit of π in
sub-quadratic time and very low memory. It improves previous results of Simon Plouffe, later
refined by Fabrice Bellard. The problem of the n-th digit computation in base 2 had already
been successfully treated thanks to the use of appropriate series, but no corresponding formula
for the question in base 10 has been found yet. However, our result is a progress. Another
result in this paper permits to compute directly the n-th decimal digit of π with intermediate
memory size, leading to intermediate time complexity between linear and quadratic.

1 Introduction

The fascination of the number π by mathematicians is ancient, and numerous computations of its
digits have been performed in the history. Later, computers have been used to increase the number
of computed digits. The largest computation as of today is impressive : more than 1241 trillions
(1.241×1012) digits of π have been recently computed on a super computer by Yasumasa Kanada
and his team [6]. Home computers are far from being able to reach these sizes ; for example, the
data of the latest computation could fill around one thousand of CD-roms. The largest values
reached today on home computer is 12 billion digits, by Shigeru Kondo, who ran the program
pifast [8] written by the author. To over-pass the memory limitation on home computers, pifast
extensively makes use of disk memory, but even this possibility does not permit to reach the feat
of super computers.

Recently, another angle to the problem have been considered by Bailey, Borwein and Plouffe
in [1]. They found the formula

π =
∞∑

k=0

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
1

16k
. (1)

which permits to compute directly the n-th bit of π with memory O(log n) and quasi-linear time
O(n log3 n). Later, a better series was found by Fabrice Bellard, which improves by 43% the
efficiency. Fabrice Bellard formula was used in a distributed project on Internet [5] by Colin
Percival to compute successfully the quadrillionth (1015) bit of π, using associated efforts of more
than one thousand home computers in the world for a total time of 1.2 million cpu hours.

It is of course natural to try to get the same kind of results in base 10, but no formula of the
kind of (1) have been found yet that naturally fits to the decimal digit computation. However,
other techniques could be applied, and Simon Plouffe [7] was the first to propose a solution with
an algorithm in time O(n3 log3 n) and memory O(log n), based on the formula

π + 3 =
∑
k>0

k2k(
2k
k

) .
This formula has no big powers of primes in denominators, and this was the key success factor in
Plouffe approach. Later, based on the same formula, Fabrice Bellard refined Plouffe technique with
an algorithm using O(n2) elementary operations on numbers of size O(log n). Our paper improves

1

this result, using a completely different technique based on a series acceleration process, leading
to an algorithm that permits to compute the n-th decimal digit of π using O(n2 log log n/ log2 n)
elementary operations on numbers of size O(log n), with memory O(log2 n) (see theorem 1). Be-
tween very low and very large memory, there is also the question of obtained techniques with
intermediate memory size and better time complexity, and we exhibit such results in theorem 2.

2 A formula suited to n-th decimal digit computation of π

Our starting point is the classical following alternating series to compute π :

π

4
= arctan(1) =

∞∑
k=0

(−1)k

2k + 1
. (2)

In this form, the formula is well suited to n-th decimal digit computation, but its convergence
is too slow. This problem is overcomed with the use of a general alternating series acceleration
technique described below.

2.1 A general alternating series acceleration process

Let an alternating series of the form

S =
∞∑

k=0

(−1)kak

where we assume that there exists a positive function weight w(x) such that

ak =
∫ 1

0

xkw(x) dx. (3)

Various acceleration convergence techniques exist for such series (finite differences Euler accel-
eration process for example, ...), and can be generalized with the following result from Cohen,
Villegas and Zagier [4].

Let Pn(x) =
∑n

k=0 pk(−x)k a degree n polynomial for which Pn(−1) 6= 0. We define

Sn =
1

Pn(−1)

n−1∑
k=0

ck(−1)kak, where ck =
n∑

j=k+1

pj .

Then we have the following bound :

|Sn − S| <=
1

|Pn(−1)|

∫ 1

0

|Pn(x)|w(x)
1 + x

dx ≤ Mn

|Pn(−1)|
S

with Mn = sup
x∈[0,1]

|Pn(x)|. (4)

This inequality suggests to choose polynomials (Pn) with small values of Mn/|Pn(−1)|.

2.2 Application to the n-th decimal digit computation of π

2.2.1 Construction of the formula

This acceleration process can be applied to the alternating series (2) since the relation (3) is
fulfilled with the positive weight function w(x) = 2x−1/2. We choose the polynomial Pm in the
form

Pm(x) =
(
xM (1− x)

)N
, (5)

2

where, for convenience, N is even. The degree of this polynomial is m = (M+1)N and it maximum
value on [0, 1] is obtained for x = 1− 1/(M + 1), thus

Mm = sup
x∈[0,1]

|Pm(x)| =

((
1− 1

M + 1

)M 1
M + 1

)N

=

((
1− 1

M + 1

)M+1 1
M

)N

≤
(

1
eM

)N

,

where e = exp(1). Applying the bound (4), we obtain

|Sm − π| ≤ π

(2eM)N
, with Sm =

m−1∑
k=0

(−1)k ck

Pm(−1)
4

2k + 1
(6)

where ck denotes the sum of the coefficients of Pm(−x) for indexes j > k. The polynomial Pm has
its coefficients vanishing for index j < MN , and its particular form easily entails that our value
of our approximation to π is

Sm =
(M+1)N−1∑

k=0

(−1)k 4
2k + 1

−
N−1∑
k=0

(−1)k 4 sk

2N (2MN + 2k + 1)
, sk =

k∑
j=0

(
N

k

)
. (7)

2.2.2 Application to the n-th digit computation

Formula (7) is a good basis for a direct n-th decimal digit computation. Suppose M ≥ 2 ; to
compute n0 decimal digits of π at the n-th position from the value of Sm, we need to have
|10nSm − 10nπ| < 10−n0. The bound in (6) shows that this is true as soon as

π

(2eM)N
<

1
10n+n0

.

This condition will be fulfilled by choosing

N =
⌈
(n + n0 + 1)

log(10)
log(2eM)

⌉
(8)

Now, once M ≥ 4 is fixed (and M even) and N chosen as in (8), we need to compute the
fractional part of 10nSm, which from (7) is equivalent to computing the fractional part of

(M+1)N−1∑
k=0

(−1)k 4× 10n

2k + 1
−

N−1∑
k=0

(−1)k 5N−210n−N+2sk

2MN + 2k + 1
.

The key of the success in our approach is the fact that N ≤ n + 2, which follows from (8) as
soon as n is sufficiently large compared to n0 (in fact n ≥ 4n0 is sufficient), thus all numerators
in the latest expression have integer value. Since the fractional part of a fraction a/b is also the
fractional part of (a mod b)/b, we have proved the following proposition :

Proposition 1 Let n be an integer, M ≥ 4 and N defined as in (8). When n ≥ 4n0, we have
N ≤ n and in this case, the fractional part of 10nπ is approximated with an error less than 10−n0

by the fractional part of B − C, where

B =
(M+1)N−1∑

k=0

(−1)k 4× 10n mod (2k + 1)
2k + 1

, (9)

C =
N−1∑
k=0

(−1)k 5N−210n−N+2 sk mod (2MN + 2k + 1)
2MN + 2k + 1

, sk =
k∑

j=0

(
N

j

)
(10)

3

3 An algorithm to compute the n-th decimal digit with very
low memory

Formulas (9) and (10) in the previous proposition permit to obtain a direct computation of the
n-th decimal digit of π by using elementary operations modulo small numbers. The technique
essentially consists in computing powers and sum of binomials modulo small integers and lead to
a sub-quadratic algorithm (thus better than the classical quadratic algorithms to compute all the
n first digits of π). More precisely, we have the following result.

Theorem 1 Let n0 be a fixed (small) positive integer, and n ≥ 4 n0. Algorithm 1 below com-
putes the fractional part of 10nπ with a precision 10−n0 using O(log2 n) memory and using
O(n2 log log n/ log2 n) elementary operations modulo numbers of size O(log n).

The complexity in terms of elementary operations modulo numbers of size O(log n) is of prac-
tical interest because the implied numbers fit into 64-bits integers for reachable parameters. As
for the bit complexity, interesting from a theoretical point of view, the cost of the algorithm is
O(n2 log log n×M(log n)/ log2 n) where M(m) is the cost of multiplication of integers of size m.
Classical multiplication corresponds to M(m) = O(m2) leading to an associated bit complexity
of O(n2 log log n). Using Schönhage multiplication, M(m) = O(m log m log log m) and associated
bit complexity for algorithm 1 is O(n2(log log n)2 log log log n/ log n) which remains sub-quadratic.

3.1 Description of the algorithm

We now detail the algorithm referenced by theorem 1.

Algorithm 1 (n-th digit computation of π with very low memory) The following algorithm
computes the fractional part of 10nπ with an error < 10−n0 when n ≥ 4n0.

1. Define integers M and N by

M = 2
⌈

n

log3 n

⌉
and N =

⌈
(n + n0 + 1)

log(10)
log(2eM)

⌉
.

2. (Computation of B) Initialize b = 0 a floating point value. For index k, 0 ≤ k < (M + 1)N
perform the following operations :

a Compute x = 4× 10n mod 2k + 1 (classical powering modulo technique is used).

b Compute b := {b + (−1)kx/(2k + 1)}.

3. (Computation of C) Initialize c = 0 a floating point value. For index k, 0 ≤ k < N perform
the following operations :

a Compute x =
∑k

j=0

(
N
j

)
mod (2MN + 2k + 1) using algorithm 2 below.

b Compute y = 5N−210n−N+2x mod (2MN + 2k + 1).

c Compute c := {c + (−1)ky/(2MN + 2k + 1)}.

4. (Final step) Compute the value x as the fractional part of b− c (x = b− c− [b− c]). Then
x is an approximation of {10nπ} with an error less than 10−n0 .

Notice that the floating point numbers involved should be encoded with a precision 10−n0/(2MN)
to ensure the final required error bound.

Algorithm 1 requires the computation of sums of binomials modulo integers m = 2MN +2k+1.
Binomials are iteratively calculated with the formula(

N

j

)
=

n− j + 1
j

(
N

j − 1

)
.

4

The difficulty relies in the fact that the modulo number m can have prime factors smaller than j,
thus inverting j modulo m is not always possible. We overcome this problem by taking the gcd of
j with m at each step of the algorithm. The binomials will be decomposed in the form(

N

j

)
=

A

B
×R1 ×R2 × · · · ×R`

where A and B will not contain any prime factors p ≤ k of m, and each Ri is a power of the prime
factor pi of m. All this is detailed in the following algorithm.

Algorithm 2 (Sum of binomials modulo an integer) Let m be a positive integer. This al-
gorithm computes the value

S =
k∑

j=0

(
N

j

)
mod m.

1. Compute the prime factors p1, . . . , p` of m (we restrict on prime factors pi of m such that
pi ≤ k).

2. Initialize A = 1, B = 1, C = 1, and R1 = . . . = R` = 1.

3. For index j, 1 ≤ j ≤ k, perform the following operations :

a Assign a = n− j + 1 and b = j.
b Decompose a and b with the powers of pi, in the form

a = a∗ × pα1
1 · · · pα`

` , b = b∗ × pβ1
1 · · · pβ`

` .

For each i, pαi
i is the exact power of pi that divides a, pβi

i is the exact power of pi that
divides b, so that a∗ and b∗ do not have one of the pi as a prime factor.

c For all i, 1 ≤ i ≤ `, compute Ri := Ri × pαi
i /pβi

i (Ri is necessarily an integer).
d Compute the values

A := A× a∗ mod m, B := B × b∗ mod m

and
C := C × b∗ + A×R1 × · · · ×R` mod m.

4. (Final step) Then the value of S modulo m is equal to C/B mod m (here inversion of B
modulo m is needed).

The correctness of the algorithm easily follows from the fact that, after each step j of the main
loop, we have (

N
j

)
R1 × · · · ×R`

≡ A

B
mod m and

j∑
i=0

(
N

i

)
≡ C

B
mod m.

The property that the values Ri are always integers comes from the fact that Ri is the power of
pi that divides

(
N
j

)
, and the binomials have integer values. Inversion of B modulo m at the final

step is possible since B never contains one of the prime factors pi. Notice also that each Ri is
smaller than N , since from a classical result of number theory, the power q of a prime number p
in
(
N
j

)
is equal to

q =
∑

h>0,ph≤N

([
N

ph

]
−
[
N − j

ph

]
−
[

j

ph

])
.

Since 0 ≤ [N/ph]−[(N−j)/ph]−[j/ph] ≤ 1, the value of q is at most equal to the maximal possible
value of h, leading to pq ≤ N . Another on algorithm 2 is that it uses only one inversion modulo
m, whose cost is O(log m) elementary operations. Finally, an easy optimization of algorithm 2 is
obtained when k > N/2 using the identity

∑k
j=0

(
N
j

)
= 2N −

∑N−k−1
j=0

(
N
j

)
.

5

3.2 Complexity of the algorithm

We now study carefully the complexity of algorithm 1 to prove theorem 1. We start by analyzing
complexity of algorithm 2, which have the most significant contribution to the global cost.

Lemma 1 For k < N < m, algorithm 2 has a memory need of O(log2 m) bits and time complexity
of

Cost2(m) = O(log m) + O(k) + O(λk(m) k)

elementary operations on numbers of size O(log m), where λk(m) is the number of distinct prime
factors p of m such that p ≤ k.

Proof : In the notations of algorithm 2, ` is equal to λk(m). The algorithm uses O(1 + `)
numbers of size O(log m) ; since 2` ≤ p1 × · · · × p` ≤ m, we have ` = O(log m) thus the memory
usage is O(log2 m).

As for the time complexity, we proceed as follows. For a given j, step 3b in algorithm 2 requires

` +
∑

i

αi +
∑

i

βi

elementary operations of size O(log m). Considering a sequence of k consecutive integers, a given
power ph

i can be the factor of at most 1 + k/ph
i of these numbers, thus for a given i the sum of

the αi and the βi for all values of j is bounded by O(k). Thus the total cost contribution of step
3b in algorithm 2 is O(`k) elementary operations of size O(log m). For a given j, steps 3c and 3d
have a cost of O(1 + `) and we conclude that the total cost of step 3 in algorithm 2 is O(k + `k)
elementary operations of size O(log m). Adding the cost O(k) of step 1 and O(log n) of step 4, we
obtain the result. •

We are now able to analyze the complexity of algorithm 1. First we concentrate on the cost of
the computation of the term B defined by (9) in step 2 of the algorithm. The most representative
cost is the powering in step 2a, and the associated complexity is O(log n) elementary operations
modulo 2k + 1. Adding this cost (M + 1)N times gives a final cost of C2 = O(MN log n) for step
2. As for the memory, it only involves a fixed number of numbers of size O(log n).

Step 3 of the algorithm should be studied more carefully. The main cost of each step k,
0 ≤ k < N , is the one of algorithm 2 used with m = 2MN + 2k + 1. The memory requirement
is thus O(log2 n). As for the time complexity, lemma 1 entails that it is clearly bounded by
O(N +Nλ(m)) where λ(m) is the total number of distinct prime factors p of m with p < N . Thus
the cost of step 3 in algorithm 1 is bounded by O(NΛ), where

Λ =
N−1∑
k=0

λ(2MN + 2k + 1).

Any prime number p ≤ N can be the factor of at most 1 + N/p numbers in the arithmetic
progression of the N integers (2MN + 2k + 1)0≤k<N , thus

Λ ≤
∑

p prime,p<N

1 +
N

p
≤ N + N

∑
p prime,p<2(M+1)N

1
p
.

The inverse of primes smaller than x is known to be O(log log x), thus we obtain Λ = O(N log log N)
and the total cost of step 3 is O(N2 log log n). Adding the cost of step 2, we have demonstrated
that the cost of algorithm 1 is

Cost1 = O(MN log n) + O(N2 log log n).

Since M = O(n/ log3 n) and N = O(n/ log n), we have proved theorem t.1.

6

4 The n-th decimal digit computation with intermediate
memory

On the one hand, we have been able to obtain an algorithm to compute directly the n-th decimal
digit of π in nearly quadratic time and using only O(log2 n) memory; on the other hand, computing
all the first n digits of π is possible in quasi-linear time and with memory O(n). It is natural to
ask if it were possible to find intermediate algorithms, that use a limited amount of memory O(m)
(for example memory O(

√
n)) and obtain an intermediate cost between linear and quadratic. In

fact, the question has a positive answer by the use of formula (7) together with the so-called binary
splitting technique on numbers of size O(m). More precisely, we have the following result :

Theorem 2 Let n0 be a fixed (small) positive integer, n ≥ 4 n0, let ε > 0 be fixed, ε < 0.1 and
suppose we make use of an amount of O(m) memory, with nε ≤ m ≤ n. We can explicit an
algorithm that computes the fractional part of 10nπ with a precision 10−n0 with time complexity

O

(
n2 log3 n log log n

m log2(n/m)

)
. (11)

Here are some specializations of the results :

• When the memory available is O(
√

n), it is possible to compute the n-th decimal digit of π
in time O(n3/2 log n log log n).

• The case where n and m are of the same order uses as much memory as used to compute all
the n first digits of π, and the associated complexity is of the same order as the complexity
of computing the first n digits π with binary splitting. However, we should expect that
practical implementation should be significantly longer (a factor 10 is probably a first rough
estimate of the lack of efficiency).

The details of the algorithm will be added soon in a next version of this unpublished paper.

5 Implementation and timings

An implementation of algorithm 1 has been made by the author with the program pidec. A
computation of the 4,000,000-th decimal digit of π has been successfully obtained in less than two
days on a Pentium III running at 900 Mhz. The corresponding source code and executable for
windows is available on the author site [9]. Even if the complexity if sub-linear, the constant is
front of the big O in theorem 1 is big and for reachable number of digits, the timings are worst
than the one obtained with classical quadratic methods (arctan formula classic implementation).
In figure 1, the timings are compared with the program by Fabrice Bellard [2], which runs in
quadratic time.

A first look at this table shows that practical timings on pidec are consistent with the theoretical
complexity of theorem 1. Another remark is that the quadratic contribution in Fabrice Bellard
program running times is low. Nevertheless, the improvement of our technique is effective : for
5000 digits, pidec is 5 times faster, for 1 million digits it should be more than 10 times faster.

7

Index of pidec time F. Bellard
decimal digit program time

5,000 0.96 sec 4.85 sec
10,000 3.13 sec 18.10 sec
20,000 10.34 sec 68.29 sec
40,000 35.96 sec 259.8 sec

100,000 185.1 sec 1520 sec
200,000 628.7 sec 5703 sec
500,000 3525 sec 34730 sec

1,000,000 15869 sec not ran
2,000,000 42316 sec not ran
4,000,000 168191 sec not ran

Figure 1: Comparison of timings on the n-th decimal digit computation, between the pidec program by
the author and Fabrice Bellard program, on a Pentium III 900 Mhz. (Fabrice Bellard program has been
compiled using the long long option, which is faster).

6 Conclusion

The technique we have presented generalizes easily to other families of constants which are defined
by alternating series, like

log(2) =
∑
n>0

(−1)n−1

n

π2

16
=

∑
n>0

(−1)n−1

n2

7π4

720
=

∑
n>0

(−1)n−1

n4

3ζ(3)
4

=
∑
n>0

(−1)n−1

n3

π3

32
=

∑
n≥0

(−1)n

(2n + 1)3

.

A large family of Bailey-Borwein-Plouffe like formulas also fit to our approach.
Another easy generalization is the computation of π in base B when B is even. The question

of odd bases B is not solved by easy generalization and needs more investigations. A solution
could be found by choosing another families of polynomials Pm ; instead of (5), one should choose
a power of a polynomial for which the value at −1 is odd, but this is not enough to answer the
problem.

Finally, the author thinks that in the followings years, distributed computations on home
computers with algorithms like the one referenced in theorem 2 will be used to increase the
reachable decimal digit of π with home computers, even if no quasi-linear complexity technique is
found. Thousands of home computers could go higher than super computers ?

References

[1] D.H. Bailey, P.B. Borwein and S. Plouffe, On the Rapid Computation of Various Polylogarith-
mic Constants, Mathematics of Computation, (1997), vol. 66, p. 903-913

8

[2] F. Bellard, Computation of the n’th digit of pi in any base in O(n2), unpublished (1997)
http://fabrice.bellard.free.fr/pi/pi n2/pi n2.html

[3] D. J. Broadhurst, Polylogarithmic ladders, hypergeometric series and the ten millionth digits
of ζ(3) and ζ(5), preprint (1998).

[4] H. Cohen, F. Rodriguez Villegas, D. Zagier, Convergence acceleration of alternating series,
preprint, Bonn, (1991)

[5] Colin Percival PiHex project. Home page at http://www.cecm.sfu.ca/projects/pihex/pihex.html

[6] Kanada Laboratory home page, at ftp://pi.super-computing.org/

[7] S. Plouffe, On the computation of the n’th decimal digit of various transcendental numbers,
unpublished (November 1996) http://www.lacim.uqam.ca/˜ plouffe/Simon/articlepi.html

[8] PiFast, the fastest windows program to compute π PiFast home page at
http://numbers.computation.free.fr/Constants/PiProgram/pifast.html

[9] N-th digit computation In Xavier Gourdon and Pascal Sebah web site at
http://numbers.computation.free.fr/Constants/Algorithms/nthdigit.html

9

